

WHERE SCIENCE SERVES NATURE

Focus on Valagro's investigation strategies for innovative biostimulant solutions

Giovanni Povero Plant Science Manager, PhD Global Research Dept.

GLOBAL RESEARCH | SCENARIO

PRODUCING MORE

USING LESS RESOURCES

SATISFY THE INCREASED DEMAND FOR FOOD

FACE THE SCARCITY OF RESOURCES, INCREASING ITS EFFICIENCY

REDUCE THE IMPACTS OF AGRICULTURAL PRACTICES ON ENVIRONMENT

ENSURE SUSTAINABILITY IN THE LONG TERM

PLANT BIOSTIMULANTS

Agronomic management

Crop genetic improvement -breeding

Biotechnologies/gene editing

practices

<image>

Management strategy that aims at carrying out agronomic interventions taking into account the **real cultivation need**, derived from the consideration that the **type of soil**, its **composition** and **microclimate** vary in different areas of a field in a non-linear and not easily observable way

Precision agriculture involves the application of the right treatment in the right place at the right time (Srinivasan, 1999; Robert, 2002; Stafford, 2006; Gebbers and Adamchuck, 2010)

Forecasting models for plant condition, early stress detection and stress monitoring

Source

Lympt

Drain

Gate

Coppedè et al., 2017

Agronomic management practices

Biotechnologies/gene editing

GLOBAL RESEARCH | PLANT BIOSTIMULANTS

«Plant Biostimulants contain substance(s) and/or microorganisms, whose function when applied to plants or the rhizosphere is to stimulate natural processes to enhance/benefit nutrient uptake, nutrient efficiency, tolerance to abiotic stress, and/or crop quality» (current EBIC definition)

Biostimulants have no direct action against pests, and therefore **do not fall** within the regulatory framework of pesticides!

SCIENTIFIC PAPERS USING THE WORD "BIOSTIMULANT" (Title, abstract, keywords)

confidential

there science serves netw

TOP 10 COUNTRIES IN PAPERS USING THE WORD "BIOSTIMULANT"

Documents

Fruit

- · Setting processes
- · Fruit size and weight
- · Quality

Crouch and van Staden, 1992; Chouliaras et al., 1997; Colapietra and Alexander, 2006; Basak, 2008; Chouliaras et al., 2009; Ross and Holden, 2010; Loyola and Muñoz, 2011; Parađiković et al., 2011; Khan et al., 2012; Parađiković et al., 2013; El-Hamied et al., 2015.

Seeds / Seedlings

- Germination
- · "Starter effect"
- · Overcoming transplant stress
- · Priming effect
- · Seed quality

Aldworth and van Staden, 1987; Featonby-Smith and van Staden, 1987; Crouch and van Staden, 1992; Russo et al., 1993; Moller and Smith, 1998; Demir et al., 2006; Sivasankari et al., 2006; Farooq et al., 2008; Neily et al., 2010; Kumar and Sahoo, 2011; Matysiak et al., 2011; Kalaivanan and Venkatesalu, 2012.

Roots

- Root development
- · Young root development
- · Rooting of cuttings

Sivasankari et al., 2006; MacDonald et al., 2010; De Lucia and Vecchietti, 2012; Ferrante et al., 2013; Krajnc et al., 2012; Petrozza et al., 2012; MacDonald et al., 2012; Alam et al., 2014.

Plant growth/yield and physiological modulation Water/nutrient uptake Stress response

Plant

Beckett and van Staden. 1990; Beckett et al., 1994; Blunden et al., 1996; Adani, 1998; Mancuso et al., 2006; Zhang and Ervin, 2008; Rois and Holden, 2010; Sangeetha and Thevanathan, 2010; Zhang et al., 2010; Fan et al., 2011; Kurnar and Sahoo, 2011; Matysiak et al., 2011; Paradiković et al., 2011; De Lucia and Vecchietti, 2012; Petrozza et al., 2012; Paradiković et al., 2013; Alam et al., 2014; Petrozza et al., 2014; San et al., 2015.

Flowers

· Flowering and sprouting induction.

Basak, 2008; Petri et al., 2008; Hawerroth et al., 2010; Pereira et al., 2011.

..... Soil

- · Physico-chemical properties
- · Development of beneficial soil microorganisms
- · Water/nutrient retention
- · Overcoming salinity stress

Booth, 1969; Cuiry and Blunden, 1991; Temple and Bomke, 1988; Chen et al., 2002; Guiser et al., 2010; Ross and Holden, 2010; Garcia-Martinez et al., 2010; Tejada et al., 2011; Alam et al., 2014.

The knowledge on the benefits of Plant BioStimulants is constantly improving (consistent increase of research papers). Less is known about their "**Mode Of Action**".

NATURAL BUT COMPLEX MATRICES: WHAT MAKES THEM SO «SPECIAL»?

Speed up preliminary screening process: no soil and competition with fungi/bacteria

- Selection of the best model plant (Arabidopsis, tomato, Brachipodium, etc.)
- Plants germination and growth under sterile conditions, on liquid or solid nutrient medium
- Light and temperature parameters are modulated/monitored
- Plant Biostimulants are added to evaluate dose-effect response curve
- Also studies of **microbials effect** on plants (PGPR, nutrient solubilization)

From Qualitative to Quantitative (microphenotyping)...

Stress

Stress + **Biostimulant**

WinRHIZO™ Analysis of Washed Roots and Arabidopsis Seedlings

Software-assisted root image analysis

OUTCOME \rightarrow Pre-selection and characterization of physiological activity

DISCOVERY

STUDY OF EXTRACTION OR FERMENTATION PROCESSES

- Testing of different extraction procedures, selecting the best ones in terms of process and yield
- Extraction procedures are calibrated in order to **selectively isolate categories of chemicals** specific for the intended use, utilizing appropriate solvent mixtures, pH, temperature and eventually enzymes to drive the process
- Evaluation of the outcome; **qualiquantitative analysis** of the active ingredients
- Scaling-up from mg to grams

OUTCOME: best extract to be formulated

C 3

Example. Process optimization to maximize the yield of low-weight molecular actives

DISCOVERY OMICS SCREENING PROTOTYPING PRIMARY SCREENING

Transcriptomics as powerful tool to decipher the molecular/physiological triggers for specific responses

NGS

OUTCOME: Molecular dissection of the effect of biostimulants and explanation of the mode of action

Gene-chip microarray

Gene-chip microarray

Where science serves note

Gene-chip microarray

Example. Overview/fingerprint of the Arabidopsis transcriptome in response to Megafol® compared to untreated test

TRANSCRIPTOMICS

Microarray, qPCR and Next Gen. Sequencing

Locus Identifier	AnnotationAnnotationAnnotationAnnotationAnnotation	FUNCTION	MEGAFOL F
<u>AT4G10270</u>	wound-responsive family proteinwound-responsive family protein	STRESS wound	62
AT3G10040	transcription factortranscription factortranscription factor	STRESS anoxia	46
AT3G02550	LOB domain protein 41 / lateral organ boundaries domain protein 41	STRESS biotic eFP	33
AT4G33070	pyruvate decarboxylase, putativepyruvate decarboxylase, putative	STRESS anoxia	25
AT2G37870	protease inhibitor/seed storage/lipid transfer protein (LTP) family prot	STRESS salt eFP	18
AT5G09520	hydroxyproline-rich glycoprotein family protein	HORMONE ABA eFP	17
AT4G33560	similar to wound-responsive protein-related [Arabidopsis thaliana] (TA	STRESS wound	16
AT1G77120	ADH1 (ALCOHOL DEHYDROGENASE 1); alcohol dehydrogenase	STRESS anoxia	14
AT2G47780	rubber elongation factor (REF) protein-related	STRESS salt eFP	10
AT5G04120	phosphoglycerate/bisphosphoglycerate mutase family protein	METABOLISM	10
AT5G62520	SRO5 (SIMILAR TO RCD ONE 5); NAD+ ADP-ribosyltransferase	STRESS cold wound eFF	8
AT5G13900	protease inhibitor/seed storage/lipid transfer protein (LTP) family prot	HORMONE ABA eFP	8
AT1G76650	calcium-binding EF hand family protein	STRESS cold eFP	8
AT1G52690	late embryogenesis abundant protein, putative / LEA protein, putative	STRESS osmotic eFP	7
<u>AT4G16780</u>	ATHB-2 (Homeobox-leucine zipper protein HAT4); DNA binding / trar	STRESS cold eFP	7
AT4G36610	hydrolase, alpha/beta fold family protein	HORMONE ABA eFP	7
AT1G02930	[AT1G02930, ATGSTF6 (EARLY RESPONSIVE TO DEHYDRATION	STRESS drought	6
AT5G07010	sulfotransferase family proteinsulfotransferase family protein	STRESS wound eFP	5
AT5G59320	LTP3 (LIPID TRANSFER PROTEIN 3); lipid binding	STRESS osmotic salt eFI	5
AT2G43620	chitinase, putativechitinase, putativechitinase, putative	STRESS osmotic eFP	5
AT1G72360	ethylene-responsive element-binding protein, putative	HORMONE ETHYLENE	5
AT3G13310	DNAJ heat shock N-terminal domain-containing protein	STRESS heat	5
AT5G45340	CYP707A3 (cytochrome P450, family 707, subfamily A, polypeptide 3	STRESS cold wound eFF	5
AT3G23170	similar to ATBET12 [Arabidopsis thaliana] (TAIR:AT4G14450.1)	STRESS cold eFP	5
AT1G19250	FMO1 (FLAVIN-DEPENDENT MONOOXYGENASE 1); monooxygen	STRESS biotic	5
AT2G34390	[AT2G34390, NIP2;1/NLM4 (NOD26-LIKE INTRINSIC PROTEIN 2;1]	STRESS anoxia	5
<u>AT5G40590</u>	DC1 domain-containing proteinDC1 domain-containing protein	HORMONE ETHYLENE	4
AT5G22460	esterase/lipase/thioesterase family protein	STRESS osmotic eFP	4
AT3G02480	ABA-responsive protein-relatedABA-responsive protein-related	STRESS osmotic eFP	4
<u>AT2G43570</u>	chitinase, putativechitinase, putativechitinase, putative	STRESS osmotic eFP	4
<u>AT2G47770</u>	benzodiazepine receptor-relatedbenzodiazepine receptor-related	STRESS osmotic eFP	4
AT5G66400	RAB18 (RESPONSIVE TO ABA 18)	STRESS osmotic	4
AT4G37770	ACS8 (1-Amino-cyclopropane-1-carboxylate synthase 8)	HORMONE ETHYLENE	4
AT5G13580	ABC transporter family proteinABC transporter family protein	TRANSPORT	4
AT5G54490	PBP1 (PINOID-BINDING PROTEIN 1); calcium ion binding	HORMONE AUXIN	4
AT3G21720	isocitrate lyase, putativeisocitrate lyase, putative	METABOLISM	4
AT5G50260	cysteine proteinase, putativecysteine proteinase, putative	HORMONE ABA eFP	4
AT5G10230	ANN7 (ANN7, ANNEXIN ARABIDOPSIS 7); calcium ion binding / calc	HORMONE ABA eFP	4
AT4G33550	lipid bindinglipid bindinglipid bindinglipid bindinglipid binding	HORMONE ABA eFP	4
AT2G22510	hydroxyproling-rich alycoprotoin family protoin		Λ

127 up regulated genes fold >3

Strictly confidential

DISCOVERY OMICS SCREENING PROTOTYPING PRIMAR'SCREEN

High-throughput, multi-spectrum i

PHENOMICS High throughput image analysis

etric and physiological parameters

JV (fluorescence): to analyze the photosynthetic efficiency

Visible - RGB: morphology, architecture, digital biomass, green and yellow index

NIR (Near Infra-Red): plant water content

FCOME: Phenotype characterization of itional, hydrological, physiological state of plants

Where spinnte serves outure

High-throughput, multi-spectrum image analysis to detect morphometric and physiological parameters

PHENOMICS High throughput image analysis

https://www.youtube.com/watch?v=xj3-r9sJyZM

Example. RGB (Red-Green-Blue) → Digital biomass

Valaqi

Example. RGB (Red-Green-Blue) → Digital biomass

Genome Strain Characterization VMC 10/70

GLOBAL RESEARCH | PRIMARY SCREENING

DISCOVERY OMICS SCREENING PROTOTYPING PRIMARY SCREENING

CONTROLLED ENVIRONMENT

BIOLOGICAL INCUBATOR

BIG POTS

+ M.o.A. analysis/validation on final formulation, through omics

BEST APPLICATION METHODS, TIMING, RATES

PLOT TESTS

OUTDOOR

PRIMARY

SCREENING

LEADING DEVELOPMENT CAPABILITY

GEAPOWER | GEAPOWER REDUCES THE COST OF TAKING A SOLUTION TO MARKET WHILE ENSURING TODAY FOR TOMORROW | GEAPOWER REDUCES THE COST OF TAKING A SOLUTION TO MARKET WHILE ENSURING

DEEP KNOWLEDGE OF ACTIVE INGREDIENTS AND RAW MATERIALS

• This enables Valagro to identify, characterize and preserve specific active ingredients that can achieve targeted physiological responses in plants

PROPRIETARY EXTRACTION PROCESSES

 Customized extraction processes help maintain the correct ratio of each ingredient in complex natural mixtures

ADVANCED SCREENING AND INVESTIGATION TECHNOLOGIES

- Genomics, phenomics and other "omic" sciences allow Valagro to decipher the genetic and molecular triggers for specific physiological responses in plant systems.
- Screening of hundreds of samples per experiment.

PROVEN ABILITY TO PROVIDE COMMERCIALLY VIABLE SOLUTIONS

- Ľ
- Extensive experience with field experiments
 - Commercial function and research function are closely integrated
 - Allows Valagro to fast-track product candidates with the best chance of attaining commercial viability

THANK YOU FOR YOUR ATTENTION

Follow us on:

